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ABSTRACT 
The inverse-distance weighted interpolation routine is a very widely used method of contour 
generation. Despite this fact, hitherto there has been no firm basis that one can refer to when 
deciding on the optimal exponent value of the weight. We report here our success with a 
series of comprehensive computer simulations and verification analyses that have produced 
useful guidelines for the optimal choice of exponent values. The test data were simulated 
isotropic spatial gamma ray distributions characterised via one-dimensional power spectrum 
analysis. Since the analysis is independent of the true identity of the data, the results may be 
extended to other applications, particularly scattered sets of isotropic environmental data. 
Our results show that the optimum exponent value is not the prevailing favourite of 2, but 
varies from 3 to 7; lower values for greatly fluctuating or noisy types of data field and higher 
values for smooth types of data field. 
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Introduction 
In many diverse fields of scientific research, particularly those in the atmospheric, 

environmental, and geostatistical sciences, it is often necessary to make predictions about the 
wider spatial distribution of various attributes using information provided by a limited 
number of sample measurements. The predictions are usually based on some form of 
interpolations between measurements that have been acquired at sampling sites either 
randomly located or neatly arranged in a grid pattern. The primary goal is to infer the real 
distribution patterns, and the predictions are most often presented as contour maps (Franke, 
1982). Examples are plentiful in the literature and our own interest is in the generation of 
contour maps of terrestrial gamma radiation dose rates (Lai et al., 1996). 

One of the interpolation techniques is the inverse-distance weighted method, first 
proposed in 1968 (Shepard, 1968). In its simplest form the value at an evaluation site is 
calculated by summing the weighted contributions from all of the other sampling sites. The 
weight is inversely proportional to an integer pth power of the distance between the 
evaluation and the sampling sites. If an evaluation site coincides with one of the sampling 
sites, then the summation is replaced with the measured value at that site. In some modified 
forms of this method, the weighted contributions may be taken from only those sampling 
sites within a specified zone-of-influence around the evaluation site (Franke, 1982). 

Because it is simple, easy to calculate and the results are generally acceptable, the 
inverse-distance weighted method became widely adopted, even though it has an inherent 
shortcoming of ignoring any underlying trends that may exist in some types of environmental 
data. In this paper, we address only those cases where the data is assumed to be isotropic in 
the two-dimensional plane. 

For a given set of samples, the value of the exponent p is crucial in determining the 
outcome of the interpolation. The original paper (Shepard, 1968) had suggested an exponent 
of 2. In the commercial data analysis software Sigma Plot that we have used to perform the 
contour calculations, the default value was 3, with no choice of zone-of-influence. There have 
also been some reports on the values of exponents that were found to produce satisfactory 
results for the specific attributes tested (Gotway et al., 1996; Weber and Englung, 1992 and 
1994; Laslett et al., 1987; Phillips et al., 1992; Van Kuilenburg et al., 1982). However, there 
has never been a comprehensive study that examines systematically the optimum values of p 
to use for arbitrary data sets of different characteristics. 

The question that prompted this paper was this: On what basis do we decide on the 
best value of exponent for an arbitrary set of data? Since a theoretical analysis is not 
available, we have opted to perform numerical experiments to obtain the answer. Our 
strategy was as follows: Find a number of different testing grounds, characterise them fully, 
collect a sufficient amount of sample data from each, generate multiple series of 
interpolations with different values of the relevant parameters, and finally, compare the 
interpolations with the testing grounds to decipher the influence of the various parameters. 

 
The Testing Grounds 

The choice of the testing ground is an important issue. Before the advent of computers, 
one would have chosen a plot of terrain with a regular grid marked out on it, and used the soil 
parameters as attributes for testing. However, the use of such a testing ground would suffer 
from several shortcomings: The collection of both the sample and reference data would cause 
permanent damages to the testing ground. The attributes could change while data were being 
collected. The data could only be as accurate as the grid pattern and measurement accuracy 
could provide. Most significantly, the biggest shortcoming was that we could not have 
complete knowledge of the underlying properties of the terrain, and could not alter it at will. 
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To overcome the above difficulties, we opted to use computer-generated terrains, 
which we could create with different properties, and of which we would have complete and 
detailed knowledge. Our testing grounds were in the form of simulated plots of terrain on 
two-dimensional square grids. The height from “sea-level” would represent an arbitrary 
environmental attribute, such as the terrestrial radioactivity dose rate. 

The underlying property that we incorporated into the terrain was an isotropic 
one-dimensional power spectral density (1-D PSD) of the form a k - n, where a is a constant, k 
the wave number and n a positive real number. The power index n was used as the 
characterising parameter for the testing ground and the sample data. 

An isotropic 1-D PSD means that the PSD of a height profile along a straight line in 
the testing ground does not depend on the orientation or location of the line. The spatial 
distributions of environmental attributes frequently exhibit 1-D PSD of the power law form 

(Lai et al., 1996; Burrough, 1981; Minato, 1996; Gilbert, 1989). The procedure for calculating 
the 1-D PSD and extracting the power index from a scattered data set has been published in 
details elsewhere (Lai et al., 1996). 

The power index n can be converted to the fractal dimension D by comparison with 
the power spectrum of the Weierstrass-Mandelbrot fractal function (Mandelbrot and Van 
Ness, 1968): 

  D = ( 5 - n ) / 2     (1) 
Fractal behaviour is observed in the range 1 ≤ D < 2 , or equivalently, 1 < n ≤ 3. 

The Monte-Carlo simulation used for creating the terrain on a two-dimensional 
square grid of N intervals and total length L on each side is as follows: 
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R1,q , R2,q and R3,q are uniformly distributed independent random numbers between 0 
and 1, q is the run number and (x, y) denotes a grid point. Q is the total run number and is set 
to 10000. The final terrain is constructed as 
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where m is a user-specified mean for offset adjustment, σ a user-specified value for scaling 
purpose, σ* the standard deviation of the *z values across all the ),( yx points, and the 
subscript n denotes the power index of the 1-D PSD. 

We produced a total of four plots of terrain with the following values of n: 0.5, 1.5, 2.5 
and 3.5 respectively. A given terrain was generated on a 120 x 120 grid with 1-unit intervals, 
but only the portion spanning the central 100 x 100 grid was used as the testing ground. The 
shoulders on the four sides provided the extra data needed during subsequent smoothing 
analyses. Without the shoulders, data points on the edges of the ground would get only 
partial smoothing. 

The testing grounds are shown in Figures 1 (a) to (d), and their characteristics are 
listed in Table 1. As can be seen from the figures, lower values of n correspond to greater 
extent of roughness. As mentioned earlier in relation to Equation (1), the intermediate cases 
of n = 1.5 and n = 2.5 are expected to exhibit fractal behaviour. 
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Contour Generation and The Blurring Test 
For the random sampling and subsequent contour analyses, a non-recurrent random 

function was used to pick a set of Ns number of sampling points { zns(xi , yi) ,  i = 1, 2,…, Ns }. 
The contour landscape, which is the 3-D form of a contour map, was generated from the 
samples on a 20 x 20 square grid of 5-unit intervals. This gave an overall plot size that was 
the same as the testing ground, but at a lower resolution. We denote the contour landscape as 
znc (xc , yc) where xc , yc = 10, 15, 20, …, 110. 

The inverse-distance interpolation algorithm used in our contour generation has the 
following form: 
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and, 
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where p is a positive integer. Contribution is taken from all the sampling points, i.e. we did 
not set any zone-of-influence. Since our testing grounds are characterised by underlying 
fractal behaviour, we should expect some small influence even from very far away points. If 
an evaluation point coincides with one of the sampling points, then the weighted summation 
is discarded and replaced with the sampled value at that point. We took care to reduce the 
number of such coincidences by using a lower resolution for the contour grid versus a higher 
resolution for the testing ground grid. 

To assess how closely the contour landscape reproduces the testing ground we used 
the root-mean-squared error analysis, RMSE. For every grid point on the contour landscape, 
(xc, yc), c = 1, ... Nc , we locate the identical grid point on the testing ground and calculate the 
square of the difference between the pair of values. The square root of the average difference 
over all grid points is the RMSE: 

 RMSE = 
( ) ( )[ ]
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cN
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The RMSE calculates the absolute errors and places equal weight on all points. The 
errors were not weighted by nz , as doing so would have enhanced mismatches in the valleys 
and decreased the impact of mismatches in the peaks. 

If the RMSE value is zero it implies a perfect fit at all the grid points. However, 
strictly speaking, the same cannot be inferred for areas in between the grid points. Therefore, 
although a lower RMSE value can be interpreted as indicating probably an overall closer 
match than one with a higher RMSE value, it may not necessarily indicate a better choice. 
The interpretation must be made with caution and in relation to other observations.  
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We thought that the RMSE by itself is not an absolute best-fit indicator, but its 
derivative might be. Generally, a contour landscape is a simplified image of the testing 
ground put together using the information provided by a collection of samples. At best it may 
be expected to resemble a “blurred” image of the testing ground. Thus, we proposed to 
perform RMSE analyses between the contour landscape and a series of increasingly “blurred” 
versions of the testing ground. A plot of the RMSE versus the blurring parameter should then 
show a minimum corresponding to the best-match condition. We called this the “blurring 
test”. 

To produce the blurring effect, we used a moving-average routine that calculates the 
blurred height at the evaluation grid point G as the average of all the original un-blurred 
heights on a set of grid points surrounding G. The set is defined as consisting of all the grid 
points on or inside the boundary of a square centred on G, and includes G itself. The term 
“moving-average” refers to the fact that as the evaluation point moves through the grid, the 
“square-of-influence” also moves along with it. The side of the square is of length 2N intervals, 
where the integer N ≥ 0. This routine is sometimes referred to as a (2N + 1)2-point moving 
average routine, in reference to the total number of grid points in the set. The blurring 
parameter corresponds to N. Thus, N = 0 means no smoothing, and N = 2 means 25-point 
smoothing. The grid resolution is not altered by the smoothing routine. The all-round borders 
of 10-intervals wide discussed earlier allowed the smoothing to be carried out right to the 
edge of our testing ground provided N ≤ 10. 

Collections of samples were done using the following procedures. From each testing 
ground we extracted measurements from 400 randomly located sampling points to form one 
set of data. This was then repeated 40 times to yield 40 sets of data for each testing ground. 
From each set of data, we generated 8 contour landscapes in a series with p varying 
progressively from 1 to 8. RMSE calculations were then performed on each contour landscape 
by comparing it systematically with a series of increasingly smoothed versions of the testing 
ground, i.e. with N varied progressively from 0 to10. Thus, for each testing ground we 
generated a total of 320 contour landscapes and performed a total of 3520 RMSE calculations. 
To ensure that valid comparisons could be made between the different testing grounds, we 
took care to use the same collection of 41 sequences of random numbers: one for generating 
the testing ground and 40 for extracting the random samples. 

 
Analysis and Discussions of the RMSE results 

The RMSE results have been condensed into Figure 2. Every point on the graph is the 
average value obtained from the 40 sets of data with the standard deviations indicated by the 
error bars. Points with the same value of p are joined in a line.  

One interesting feature in Figure 2 is that for a given p, the line typically starts with 
a negative gradient then bends upwards forming a dip. The significance of this is centred on 
our use of RMSE to measure the extent of mismatch between a contour landscape and 
smoothed copies of the testing ground. The presence of a dip at N > 0 indicates that 
statistically, the contour landscape matches a smoothed copy of the testing ground better 
than the original. 

As p increases, the dip tends to a lower limit in N, marked as N0 in the figures. The 
existence of a lower limit indicates clearly that the inverse-distance routine is not capable of 
generating a contour landscape with any more details than a (2N0+1)2-point smoothed copy of 
the testing ground. In other words, it is reasonable to regard N0 as an indicator of the limit of 
correspondence. This important observation vindicates our use of the “blurring tests”, defying 
the traditional wisdom of judging a contour landscape against the original testing ground. 

N0 appears to have the same value for all the cases in Figure 2. Since all these cases 
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have data sets of the same size, could changing the size of the data set affect the N0 limit? In 
Figure 3, we varied the size of the data set while maintaining the same grid resolution. As the 
number of sampling points increases, N0 can be clearly seen to decrease, indicating an 
improved limit of correspondence. This agrees with the general notion that a larger data set 
should yield a more accurate contour landscape. 

Since N0 can be regarded as an indicator of the limit of correspondence, then in our 
search for the optimal p value, the choice should not be based on the RMSE scores at 
N values that are less than N0. On the other hand, neither should it be based on the overall 
lowest RMSE score, since this may occur at a large N value. The simplest choice might be the 
p value that gives the lowest RMSE score at N0. However, this choice may turn out be one 
whose RMSE dip occurs far away from N0, as is the case in Figures 2a and 2b, implying a 
closer resemblance to a more highly smoothed landscape. Since our desire is to produce a 
contour landscape that overall resembles the original as closely as possible, we should look 
for a RMSE dip at a low N value, limited only by N0. Therefore, we propose a more prudent 
selection rule, which is to choose the p value that gives rise to a RMSE dip that is the lowest 
among those at or very near to N0. 

If the above selection rules were applied to Figure 2b where N0 = 3, the resultant 
optimal choices would be: i) p = 3 using the first rule, ii) p = 5 or 6 using the second rule. The 
two cases of 5 & 6 have overlapping standard deviations, but since the dip of p = 6 is closest to 
N0, the preference is on 6. Although p = 4 has a lower RMSE dip, the position of the dip is 
mid-way between N = 3 and N = 4. This indicates resemblance to a landscape of greater 
extent of smoothing than the 49-point smoothing of N = 3. Therefore p = 4 is not considered 
the optimal choice. 

Could we have obtained a different set of optimal p values if we had changed the size 
of the data sets? A detailed examination of Figure 3 shows that although the limit N0 shifts 
with the number of sampling points, this change does not appear to have any influence on the 
ordering of the curves, nor the proximity of the RMSE dips to N0. Therefore, the same optimal 
values would have been obtained had the data sets been of a different size. 

Whatever the values, it is interesting that none of the above cases gives the commonly 
assumed value of p = 2. We summarise in Table 2 the optimal values of p for the various 
testing grounds obtained using the first and second criteria. 

To gain more insights, we plot in Figure 4 the mean contour landscapes for 
p = 2, 3 and 6. Each of these is the mean of the 40 contour landscapes that were used in the 
calculation of Figure 2b. The smoothed testing grounds with N = 3, 4 and 10 have also been 
shown in the bottom row such that the vertical pairings relate to the dips of the respective p 
curves in Figure 2b: (p = 2, N = 10), (p = 3, N = 4), (p = 6, N = 3). 

A glance at Figure 4 would confirm that visually, the resemblance between any 
vertical pair is much better than any diagonal pair. For example, the N = 3 landscape at the 
right of the bottom row shows how the original testing ground would look like after a 49-point 
smoothing routine is performed on it. A casual glance at the top row would suggest that both 
the p = 3 and p = 6 mean contour landscapes appear similar to it. However, closer 
examination shows that the valleys along X = 40 and the blue peaks above the green bands 
are better reproduced in p = 6 than in p = 3. In other words, the right-most vertical pair has 
the best overall resemblance between the partners. This observation lends supports to the 
second criterion that gives p = 6 as the optimal choice based on the proximity of its RMSE dip 
to N0, located at N = 3. 

It is interesting to note that in fact, 6 out of the 9 possible pairs in Figure 4 have lower 
RMSE values than the optimum pair. As discussed earlier, the trend and dip of the RMSE 
curves are of more importance than the absolute RMSE values. The reason is that an isolated 
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RMSE calculation can over-emphasise a small number of localised medium or large 
differences between the contour landscape and the testing ground. Therefore we need to track 
the derivative of the RMSE calculations, as we have just demonstrated, in order to discover 
the true picture. 

Theoretically, it is difficult to explain the occurrence of high exponent values.  
However, if we bear in mind that the weight in Equation 4 is a merely a means of 
apportioning influence from the randomly distributed sample points that surrounds the 
evaluation site, then it can be appreciated that high exponent value would result in the 
filtering out of far away influences better than low exponent value. In smoothly varying 
terrains, this would be desirable as the local trend is more crucial than long-distance 
similarities. The net effect of a high exponent value would have been equivalent to restricting 
contributions to come only from a small zone-of-influence around the evaluation site. This 
might explain why the use of a zone-of-influence was found to be useful by some authors 
(Franke, 1982). With rough terrains like those in Figure 1a and 1b, the situation would be 
opposite: long-distance similarities are more prominent than local trend. In such cases, low 
exponent values would be more suitable. 

 Although our test data originally arose from simulated isotropic spatial gamma ray 
distributions, the simulation process itself was characterised by only one parameter: the 1-D 
PSD power index, k. Thus, the analysis is actually independent of the true identity of the data. 
Therefore, we believe that our results may be extended to other applications, particularly 
scattered sets of isotropic environmental data.  
 
Conclusion 

In conclusion, we have shown through a series of numerical experiments that the 
most suitable exponent for use in the usual form of the inverse-distance weighted method of 
contour generation may not be the commonly assumed value of 2. On the contrary, the 
optimum power may be from 3 to 7 depending on the characteristic of the data field, 
measured via the power index of an isotropic one-dimensional power spectral density. The 
results indicated that a higher value should be used for a smooth type of data field and a 
lower value for a greatly fluctuating or noisy data field.  
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Table 1: Characteristics of the four testing grounds, where n is the power index of the 1-D PSD, 
a k-n. 

Value of n 
specified 

Value of n from PSD 
analysis of 10 sets of 400 

random samples each 

 
Reasons for the choice of n 

0.5 0.65 ± 0.29 non-fractal, noisy terrain 

1.5 1.73 ± 0.14 fractal behaviour, value of n is typical of the 
distribution of terrestrial gamma radiation 

2.5 2.69 ± 0.23 fractal behaviour, value of n is typical of a 
wide range of environmental attributes 

3.5 3.44 ± 0.37 non-fractal, smooth terrain 

 
Table 2: The optimal values of p obtained using the first and second criteria (see text) respectively. 

Testing Ground, n First Criterion Second Criterion 

0.5 2 3 

1.5 3 6 

2.5 4 6 

3.5 4 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1.  The four testing grounds with their respective power indices. 

a) b) 

c) d) 



K.K.Lai & S. Minato 

10 

N0 2 4 6 8 10 12

R
M

S
E

1

2

3

4

5

6

7

8

9

10

11

p = 1 

p = 2

p = 3

p = 4

p = 5
p = 6
p = 7
p = 8

N0 2 4 6 8 10 12

R
M

S
E

1

2

3

4

5

6

7

8

9

10

11

p = 1 
p = 4

p = 5
p = 6
p = 7
p = 8

a)  n = 0.5 b)  n = 1.5

p = 2

p = 3

N
0 2 4 6 8 10 12

R
M

S
E

1

2

3

4

5

6

7

8

9

10

11

p = 1 

p = 2
p = 3

p = 4
p = 5
p = 6
p = 7
p = 8

N0 2 4 6 8 10 12

R
M

S
E

1

2

3

4

5

6

7

8

9

10

11

p = 1 

p = 2

p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

c)  n = 2.5 d)  n = 3.5

N0 N0

N0 N0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Results of the RMSE analyses between contour landscapes and smoothed testing 
grounds. The testing grounds are identified by n, the contour landscapes are characterised by 
p, and N is the blurring parameter. 40 sets of random samples were extracted from each 
testing ground and used to generate 40 contour landscapes for each p value. The data point 
on the curves represents the average result obtained from the RMSE analyses performed on 
those 40 contour landscapes, and the error bars indicate the standard deviations. 
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Figure 3. The effect of changing the number of random data points (NRDP) on the shape of 
the RMSE curves and the value of N0. The testing ground is n = 1.5. All symbols have the 
same meaning as in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The top row shows 40-sets-averaged contour landscapes generated using the 
indicated p values for the testing ground of n = 1.5. When each of these averaged contour 
landscapes is evaluated against a series of smoothed testing grounds, the lowest RMSE is 
obtained when the evaluation is against the smoothed testing ground shown directly below it. 


